
www.manaraa.com

Binghamton University Binghamton University 

The Open Repository @ Binghamton (The ORB) The Open Repository @ Binghamton (The ORB) 

Graduate Dissertations and Theses Dissertations, Theses and Capstones 

5-3-2018 

Mechanical Reinforcement of Polyacrylamide Hydrogels Using Mechanical Reinforcement of Polyacrylamide Hydrogels Using 

Pristine Single-Walled Carbon Nanotubes Pristine Single-Walled Carbon Nanotubes 

Wuxiang Feng 
Binghamton University--SUNY, wfeng5@binghamton.edu 

Follow this and additional works at: https://orb.binghamton.edu/dissertation_and_theses 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Feng, Wuxiang, "Mechanical Reinforcement of Polyacrylamide Hydrogels Using Pristine Single-Walled 
Carbon Nanotubes" (2018). Graduate Dissertations and Theses. 58. 
https://orb.binghamton.edu/dissertation_and_theses/58 

This Thesis is brought to you for free and open access by the Dissertations, Theses and Capstones at The Open 
Repository @ Binghamton (The ORB). It has been accepted for inclusion in Graduate Dissertations and Theses by 
an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please 
contact ORB@binghamton.edu. 

https://orb.binghamton.edu/
https://orb.binghamton.edu/dissertation_and_theses
https://orb.binghamton.edu/etds
https://orb.binghamton.edu/dissertation_and_theses?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/dissertation_and_theses/58?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ORB@binghamton.edu


www.manaraa.com

 

 
 

MECHANICAL REINFORCEMENT OF POLYACRYLAMIDE 

HYDROGELS USING PRISTINE SINGLE-WALLED CARBON 

NANOTUBES 

 
 
 
 
 
 
 
 
 
 
 
 

BY 

WUXIANG FENG 

BS, Wuhan Institute of Technology, 2014 
 

 

 

 

 

 

 

 

THESIS 

Submitted in partial fulfillment of the requirements for 

the degree of Master of Science in Mechanical Engineering 

in the Graduate School of 

Binghamton University 

State University of New York 

2018 
  



www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10816412

10816412

2018



www.manaraa.com

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Wuxiang Feng 2018 

All Rights Reserved 



www.manaraa.com

 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accepted in partial fulfillment of the requirements for 

the degree of Master of Science in Mechanical Engineering 

in the Graduate School of 

Binghamton University 

State University of New York 

2018 

 

May 3, 2018 

 

Dr. Changhong Ke, Chair and Faculty Advisor 

Department of Mechanical Engineering, Binghamton University 

 

Dr. Xin Yong, Member 

Department of Mechanical Engineering, Binghamton University 

 

Dr. Scott Schiffres, Member 

Department of Mechanical Engineering, Binghamton University 



www.manaraa.com

 

iv 
 

Abstract 

Hydrogels have great promise as an innovative biomedical material possessing 

many advantages such as high water content, porous structure, and excellent 

biocompatibility. Although hydrogels have been used to develop some successful 

applications, they commonly do not have sufficient mechanical strength required for 

artificial soft tissues. Here, the author fabricated reinforced PAAm hydrogels using 

single-walled carbon nanotubes as reinforcing materials. The fusion of SWCNTs and the 

PAAm matrix successfully generated SWCNTs/PAAm hybrid gels with improved 

mechanical strength. Moreover, the aqueous dispersion of SWCNTs used for engineering 

the hybrid gels remained excellent stability after two months. SEM images from previous 

research and fragments of gels after compression tests have shown that the enhancement 

is based on increased micro-networks in the porous structure of hydrogels and decreased 

stress concentration. Some phenomena, such as surface patterns, wave-like edges, and 

adhesiveness of gel fragments, were also mentioned and discussed. 

Keywords: nanocomposite hydrogels; single-walled carbon nanotubes (SWCNTs); 

mechanical strength 
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Introduction 

Hydrogels are soft, porous, three-dimensional crosslinked polymers which can 

keep swollen in water and not resolved itself. Hydrogels with their advantageous 

characteristics such as high swelling ratio, porous framework, and high biocompatibility 

have been extensively used as materials for contact lenses1, injectable implants2, wound 

dressing3, drug delivery4, hygiene products5, agriculture6, scaffold in tissue engineering7,8 

and gel electrophoresis9. Moreover, hydrogels are considered as the only candidate for 

generating artificial water-rich soft tissues used as substitutes for real ones such as 

tendons, ligaments, cartilage, and muscle.10 However, this is a very tough task for 

material scientists because hydrogels are inherently soft, weak and very sensitive to 

notches. Most single network hydrogels have elastic moduli and strength ranging from 

several hundred Pa to several hundred kPa and strain at less than 100%. The mechanical 

properties of single network hydrogels can be hardly compared to those of biological soft 

tissues. For example, the elastic modulus of polyrotaxane gel that immersed in different 

solutions ranged from 0.5 kPa to 2 kPa.11 Compressive tests of PEG hydrogels showed 

that its elastic modulus and failure stress could reach as high as 230 kPa and 180 kPa.12 

The compressive failure stress and strain of agarose gel were reported to be 606 kPa and 

0.36, respectively, when the concentration of agarose solution used for this test was 10 

wt%13. In contrast to single network gels, the mechanical properties of soft tissues are 

much more superior. For example, cartilage with 68-85 wt% water exhibits Young’s 

moduli of 1-10 MPa (tension) and 1 MPa (compression), yield strength of 3 MPa and 
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ultimate tensile strength ranging from 10-35 MPa.10,14 Ligament, containing 60-80% 

water of its wet weight, shows Young’s modulus of 1.2-1.8 GPa, ultimate failure stress of 

50-150 MPa (tension) and ultimate failure strain of 13-18%.14 Thus, methods to 

strengthen the mechanical properties of hydrogels without compromising their beneficial 

qualities are desirable. 

Incorporation of CNTs within the hydrogels is one of the methods that can 

significantly improve the mechanical properties of hydrogels. For example, Liu et al. 

reported that the P(AM-co-SMA) hydrogels infused with MWNTs-COOH exhibited 

considerable compressive strength and improved recoverable strain. In compression tests, 

the P(AM-co-SMA)/MWNTs-COOH nanocomposite hydrogels in buffer solutions of 

PH=1.4 with 1.5 wt% MWCNTs showed a maximum increase of 60% in failure stress15. 

Chatterjee et al. investigated the mechanical strength of chitosan (CS) hydrogel beads 

impregnated with MWCNTs and found the maximum compressive force the hydrogel 

beads could withstand increased from 1.87 N for neat CS hydrogel to 7.62 N when only 

0.01 wt% MWCNTs were added into the CS matrix.16 Wang et al. also reported increases 

of 93% and 99% for the tensile modulus and strength of CS hydrogel, respectively, by 

infusing 0.8 wt% MWCNTs into the CS matrix.17 Dong et al. reported the fabrication of 

PAMPS/PAAm/CNTs nanocomposite DN hydrogels. The nanocomposite hydrogels 

reinforced by MWCNTs without organic modification showed superior mechanical 

properties, and their compressive modulus and fracture stress were about 4.5 times and 4 

times as high as that of neat hydrogels respectively.18 Shin et al. engineered MWCNT-

embedded GelMA hydrogel sheets. They found that the incorporation of 3 mg/ml 

MWCNTs led to the compressive modulus increasing from 10 kPa to 32 kPa.19 However, 
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most of the research used MWCNTs as nano-fillers which are easier to disperse in water 

but are weaker in mechanical strength than SWCNTs. Although SWCNTs possess the 

best specific strength of up to 48,000 kN∙m/kg, the strong van der Waals interactions 

(∼40 𝑘𝐵𝑇 𝑛𝑚⁄ ) between adjacent SWCNTs make them difficult to disperse.20,21 But if 

this problem can be overcome, a significant leap on the mechanical strength of 

nanocomposite materials may be realized. Also, the effectiveness of de-agglomeration 

and the homogeneity of CNTs, which play essential roles in enhancing the mechanical 

properties of hybrid hydrogels, were not sufficiently studied in previous research. 

Although some methods such as analysis of TEM and SEM images were performed to 

investigate them, these images can only illustrate the local condition of nanocomposite 

gels.  

To create a CNT reinforced nanocomposite hydrogel, the author utilized 

polyacrylamide (PAAm), which has been a general medium used in almost all 

electrophoretic methods. PAAm is of exceptional promise for research areas, such as 

enzyme immobilization22, carriers for drug delivery23, smart materials24, and 

extracorporeal toxin removal modalities25, owing to its non-toxic and non-biodegradable 

qualities. PAAm gels, formed by copolymerization of acrylamide and N,N’-methylene-

bis-acrylamide (BIS), are transparent synthetic hydrogels. The monomers, acrylamide 

(AAm), are polymerized by vinyl addition process initiated by free radical-generating 

agents, ammonium peroxydisulfate (APS) and N,N,N’,N’-tetramethyl-ethylenediamine 

(TMEDA). TMEDA also serves as a catalyst that speeds up the formation of free 

radicals. Free radicals then turn the monomers into more free radicals thus elongating the 

polymer chains which are randomly cross-linked by the crosslinking agents, BIS.  
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In this thesis, the author reports nanocomposite hydrogels with pristine 

SWCNTs homogeneously incorporated into PAAm matrix, demonstrating significant 

improvement in mechanical strength compared with neat PAAm hydrogel. The 

compressive test results illustrate that the compressive modulus, a critical parameter for 

tissue engineering19,26, increased from 13.2 kPa for neat PAAm gels to as high as 57.4 

kPa for SWCNTs/PAAm hybrid gels with a concentration of SWCNTs at 0.5 mg/ml. 

This concentration is lower compared with previous research using MWCNTs as nano-

fillers that obtained similar improvement in mechanical strength18,19. The author first 

prepared the dispersion of SWCNTs following a sequence of sonication, centrifugation, 

and filtration. Then an estimation of the concentration of individual SWCNTs in the 

dispersion was conducted. The dispersion of SWCNTs remained remarkably stable and 

homogeneous after two months storage. The author next incorporated the SWCNTs into 

the PAAm gel matrix and investigated the mechanical properties of the hybrid hydrogels 

by compression tests. The compression tests revealed significantly improved compressive 

modulus, fracture stress, toughness but diminished fracture strain. This thesis reviews the 

toughening mechanism of the hybrid hydrogel base on SEM images and fragments of 

hydrogels. Some phenomena observed in the experiment are also mentioned and 

discussed. 
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Experiment 

Materials 

Acrylamide (AAm, 99.9%), N,N’-methylene-bis-acrylamide (BIS, 99%), 

ammonium peroxydisulfate (APS, 98%), N,N,N’,N’-tetramethyl-ethylenediamine 

(TMEDA, 99%) , sodium dodecylbenzene sulfonate (NaDDBS, 99%) were purchased 

from VWR International, Inc. Single-walled carbon nanotubes (SWCNT, 1-2 nm in 

diameter, 1.1 nm in average diameter, 5-30 µm in length, 98% in purity) were purchased 

from US Research Nanomaterials, Inc. All materials were used as received. 

The weight ratio of SWCNTs to NaDDBS 

Olga et al. reported that once NaDDBS molecules have saturated the surface of 

the nanotubes, the additional NaDDBS surfactant is unnecessary and may act as an 

impurity in the solution.27 By a number of trials, it was found that the weight ratio of 

SWCNTs to NaDDBS at 1:4 can disperse the SWCNTs effectively, although Islam et al. 

reported that the optimal ratio was 1:10.18 Higher weight ratio might induce foaming of 

surfactants that compromises the dispersion of SWCNTs, while lower weight ratio is not 

sufficient to disperse the nanotubes effectively. 

The aqueous dispersion of SWCNTs 

SWCNTs (0, 5, 10, 20 mg) and NaDDBS with the weight ratio of 1:4 

respectively were added to 20 ml distilled water. The mixture of SWCNTs, NaDDBS, 



www.manaraa.com

 

6 
 

and distilled water was sonicated by horn sonication (20% amplitude, 2 sec on and 1 sec 

off) for 15 min in an ice bath (Figure 1). The reason for using 20% amplitude is that the 

cavitation phenomenon may be too strong above this value, generating intense shock 

waves and foam of the surfactant.28–30  

 
(a) 

 
(b) 

Figure 1. (a) Branson S-450 digital ultrasonic homogenizer and 13mm tapped horn with 

a flat tip. (b) The dispersion was put in a beaker floating on the iced water. 
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To examine the degree of the de-agglomeration of the SWCNTs after 

sonication, we took a droplet of dispersed SWCNTs out of the beaker and dropped it into 

a glass of distilled water. If there were visible bundles of SWCNTs, it was decided that 

the suspension need more sonication until no bundles can be observed (Figure 2). This 

direct and straightforward testing method is named as the degree of CNTs de-

agglomeration test (DCDT) in this thesis. Due to the nanoscopic scale of the diameter of 

SWCNTs, DCDT is inaccurate, but it can show a rough degree of the de-agglomeration 

intuitively and quickly.  

The suspension was subsequently centrifuged at a speed of 2000 r/min for 30 

min.31 Finally, the mixture was filtered by a 325 mesh (44 μm) stainless steel screen 

filter to remove the sediment that made up of bundles of SWCNTs. After filtration, the 

filter was gently washed with distilled water to get rid of residual NaDDBS and then 

dried in a vacuum box at 100℃ to remove residual water.32 The weight of the sediment 

of SWCNTs bundles can be determined by subtracting the weight of clean filter from the 

weight of sediment and filter after drying. The percentage of individual SWCNTs can be 

expressed as 

%D =
𝑀𝑐𝑛𝑡 − (𝑀𝑓′ − 𝑀𝑓)

𝑀𝑐𝑛𝑡
100% 

where %D is the percentage of individual SWCNTs in the dispersion, 𝑀𝑐𝑛𝑡 is the weight 

of total SWCNTs, 𝑀𝑓′ is the weight of sediment and filter after drying, and 𝑀𝑓 is the 

weight of the clean filter.  

We obtained that the %D was approximately 52%, 47%, 55% respectively for 

dispersion with 5, 10, 20 mg SWCNTs added initially. Here, we assumed that %D for all 

three dispersions are 50% for ease of calculation. The concentration of the SWCNTs in 
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the final four aqueous dispersion was 0, 0.125, 0.25, 0.5 mg/ml respectively. 

  

Figure 2. The diffusion of a droplet of the dispersion in the water illustrates the degree of 

de-agglomeration of SWCNTs. (a) Well-dispersed SWCNTs (b) Agglomerated SWCNTs  

SWCNTs/PAAm hydrogels 

The crosslinking agent BIS (25 mg) was first added into 10ml aqueous 

dispersion of SWCNTs (varied at 0, 0.125, 0.25, 0.5 mg/ml) and mildly sonicated (10% 

amplitude) until it fully dissolved in the dispersion. Subsequently, the monomer AAm 

(1g), the initiator APS (10 mg) and the accelerator TMEDA (10μl) were successively 

added to the dispersion in an ice bath.33 After being vigorously stirred for 15 min, the 

mixture was distributed into vials with 1 ml mixture in each of them. The vials were put 

in ambient environment for 3 min to equilibrate to room temperature (23-25 ℃) and then 

degassed in a vacuum box under a pressure of 23 Torr or lower for 30 min.34 Lids were 

instantly closed after the vials were taken out of the vacuum box to keep the hydrogels 

from being contaminated and dehydrated. The as-prepared hydrogels (Figure 3) were left 

alone for at least 12 hours in the vials to complete the polymerization.34 The formulations 

of SWCNTs/PAAm hydrogel are listed in Table 1.  
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Figure 3. As-prepared hydrogel samples with a concentration of SWCNTs varied at 0, 

0.125, 0.25, 0.5 mg/ml respectively. 

Table 1. The formulations of SWCNTs/PAAm hydrogels 

Hydrogels 𝐶𝐶𝑁𝑇𝑠 

(𝑚𝑔/𝑚𝑙) 

𝐶𝑁𝑎𝐷𝐷𝐵𝑆 

(𝑚𝑔/𝑚𝑙) 

𝐶𝑃𝐴𝐴𝑚 

(𝑚𝑔/𝑚𝑙) 

𝐶𝐵𝐼𝑆 

(𝑚𝑔/𝑚𝑙) 

𝐶𝐴𝑃𝑆 

(𝑚𝑔/𝑚𝑙) 

𝐶𝑇𝐸𝑀𝐷𝐴 

(𝜇𝑙 ∕ 𝑚𝑙) 

𝐶𝑁𝑇0 0 0 100 2.5 1 1 

CNT0.125 0.125 1 100 2.5 1 1 

CNT0.25 0.25 2 100 2.5 1 1 

CNT0.5 0.5 4 100 2.5 1 1 

 

Compression test 

A universal testing machine (ADMET eXpert4000 with MTESTQuattro) was 

used for compression tests at room temperature (Figure 4). The cylindrical samples were 

taken out of the vials right before use and then immersed in distilled water for several 

seconds. The compression tests for all samples were finished within 4 min so that they 
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can remain their original hydrated conditions at the end of the tests. Since all samples 

were polymerized out of 1ml mixture in the vials, they have same dimensions. Each of 

the cylindrical samples with 14.3 mm in diameter and 6.2 mm in height was put on the 

lower plate and compressed by the upper plate connected with a 100 lbf (444.8 N) load 

transducer (Figure 5). The strain rate for the compression tests was 2 mm/min. The 

compression stopped as soon as the stress dropped by 15% concerning the peak stress. 

For each group of hydrogels with the same concentration of SWCNTs, eight samples 

were produced for compression tests from which at least three samples obtained valid 

experimental data for data processing.  

 

Figure 4. ADMET eXpert4000 universal testing machine with the MTESTQuattro 

materials testing system was used for the compression tests. 

The compressive stress 𝜎𝑐 was approximately determined by engineering 

stress: 
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𝜎𝑐 = 𝐹/𝜋𝑅2 

Where F is the compressive force applied to the specimen, R is the radius of the as-

prepared specimen.  

The compressive strain 𝜀, defined as engineering strain, was determined by the 

ratio of the change in the height of specimen to the original height of the specimen: 

𝜀 = (ℎ0 − ℎ)/ℎ0 

Where ℎ0 is the original height of the specimen, h is the height of the specimen under 

compression. 

The Young’s modulus for compression was defined as the slope of the stress-

strain curve at 𝜀 between 0 and 0.1. The toughness was determined by the area under the 

compressive stress-strain curve. 

 

Figure 5. Compression tests for SWCNTs/PAAm nanocomposite hydrogels. 
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Results and Discussion 

The stability of aqueous dispersion of SWCNTs  

The stability of aqueous dispersion of SWCNTs is an important parameter that 

affects the mechanical strength of nanocomposite hydrogels. Although individual 

SWCNTs have exceptional axial mechanical strength and aspect ratios, which we want to 

take full advantage, the agglomeration of SWCNTs that generates bundles of CNTs 

results in diminished aspect ratios and mechanical strength of only a few GPa35. We 

noticed that the well-dispersed SWCNTs in the dispersion processed only by sonication 

re-agglomerated easily under slight vibration or temperature changes, making fabrication 

of homogenous SWCNTs/PAAm hydrogels nearly impossible. However, the dispersion 

with a concentration of SWCNTs at 0.5 mg/ml prepared in our experiment processed by 

sonication, centrifugation and filtration can still keep stable after two months, 

demonstrating few sediment in the dispersion (Figure 6). Moreover, no sediment or 

bundles of CNTs were observed in the aqueous mixture consisting of AAm, BIS, APS, 

TMEDA, and dispersed SWCNTs after being treated with mixing, stirring, and sonication 

by DCDT. Therefore, the dispersion of SWCNTs prepared by methods above can be used 

to fabricate homogeneous SWCNTs/PAAm hydrogels. 
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Figure 6. Two vials of 0.5 mg/ml dispersion of SWCNTs were put alone for two months. 

The left one was treated with sonication, centrifugation, and filtration. The right one was 

treated only by sonication. 

Compressive Behavior 

The compressive stress-strain curves are shown in Figure 7, which demonstrate 

the tendency of enhancing mechanical strength with the addition of SWCNTs.  
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Figure 7. Stress-strain curves for SWCNTs/PAAm hydrogels with varied concentrations 

of SWCNTs. 

The experimental data of compressive modulus, fracture strain, fracture stress, 

and toughness for neat and nanocomposite hydrogels are listed in Figure 8 and Table 2. 

Apparently, the incorporation of SWCNTs into hydrogels led to an increase in Young’s 

modulus, fracture stress, and toughness, yet a decrease in fracture strain. The Young’s 

modulus of SWCNT-filled nanocomposite hydrogels (SWCNTs, 0.5mg/ml) was 57.4 ± 

4.7 kPa, leading to more than fourfold increase, compared with neat PAAm hydrogels 

(13.2 ± 2.1 kPa). The fracture stress increased by 58%, from 249.1 ± 15.8 kPa for neat 

PAAm hydrogels to 393.1 ± 27.0 kPa for CNT0.5. The toughness also increased by 44% 

from 36.6 ± 3.4 KJ/𝑚3 for CNT0 to 52.3 ± 4.0 KJ/𝑚3 for CNT0.5. However, the 

fracture strain slightly declined by 11% from 0.81 for neat PAAm gels to 0.72 for 

CNT0.5.  
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Table 2. The mechanical properties of SWCNTs/PAAm hydrogels with varied 

concentrations of SWCNTs 

Hydrogels 
Compressive 

modulus (kPa) 

Fracture stress 

(kPa) 
Fracture strain 

Toughness  

(𝐾𝐽/𝑚3) 

𝐶𝑁𝑇0 13.2 ± 2.1 249.1 ± 15.8 0.81 ± 0.05 36.6 ± 3.4 

CNT0.125 19.9 ± 3.3 306.6 ± 23.5 0.77 ± 0.07 39.6 ± 5.3 

𝐶𝑁𝑇0.25 31.0 ± 3.5 376.4 ± 31.3 0.75 ± 0.06 47.5 ± 4.8 

𝐶𝑁𝑇0.5 57.4 ± 4.7 393.1 ± 27.0 0.72 ± 0.04 52.3 ± 4.0 

 

 

Figure 8. The mechanical properties of SWCNTs/PAAm hydrogel samples with varied 

concentrations of SWCNTs 

Toughening mechanism  

To understand the toughening mechanism of SWCNTs/PAAm hybrid gels, it is 
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necessary to know the reasons for the weak mechanical strength of neat PAAm gels.  

One reason is the scant friction between polymer chains due to the low 

concentrations of polymer chains and the mesh structure of hydrogels (Figure 9).10,36 

Gong et al. presented double network gels prepared by two different polymer monomers 

polymerized in proper order, exhibiting extraordinary mechanical strength comparable to 

real soft tissues.10 The second polymer network brings about more friction between 

polymer chains and increases the concentration of polymer chains, thus reinforcing the 

mechanical strength of the hybrid gels. 

 

Figure 9. The structure of a crosslinked hydrogel with mesh size ξ. (Reproduced from 

literature.36) 

Another reason is the heterogeneities of the network of hydrogels. The various 

length of chains engenders stress concentrating on the shortest chain.37,38 This could be 

verified by some unexpectedly low fracture stress and strain of PAAm gels observed in 

the compression tests. The heterogeneities can be ameliorated by improved experimental 

methods, such as more stirring during the gelation, but they can’t be entirely avoided. 
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The PAAm gels we made (10 %T, 1 %C) possessing a compressive modulus of 13.2 kPa 

can be regarded as relatively homogeneous gels according to the experimental data 

showed in Figure 10.39  

 

Figure 10. The elastic modulus of PAAm gels with different total polymer content (%T) 

and crosslinking agent content (%C). (Reproduced from literature.39) 

Here, we speculate that the infused SWCNTs can interact with PAAm 

networks, leading to more friction and entanglement. Figures 11 and 12 show the SEM 

images of the microstructure of PAMPS/PAAm double network hydrogels incorporated 

with pristine MWCNTs, which may also be useful for illustrating the microstructure of 

SWCNTs/PAAm hybrid gels. (In Figures 11 and 12, CNTs-α indicates the weight ratio 

of MWCNTs to AMPS is α wt%. The concentration of AMPS is 1 mol/L. Therefore, the 

concentration of CNTs of 4 specimens is approximately 0, 1, 2, 8 mg/ml respectively.) As 

is shown in the images, the micro-networks in the pores increases with the incorporation 

of MWCNTs. These micro-networks may contribute to energy dissipation and less stress 

concentration. A few CNTs bundles were also observed to exist on the pore wall, which 

may lead to a more rigid pore structure resulting from friction between CNTs and 

polymer chains. 
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The SWCNTs may also reduce the heterogeneity of the network of the 

hydrogels. We found that the sizes of the fragments of hybrid gels after compression tests 

are much smaller than those of neat PAAm gels (Figure 13, Figure 14), which may be an 

indication of a more homogeneous porous structure of the hybrid gels. 

 

Figure 11. The SEM images of nanocomposite PAMPS/PAAm/MWCNTs double 

network hydrogels (A,a) CNTs-0; (B,b) CNTs-0.5; (C,c) CNTs-1 and (D,d) CNTs-4. 

(Reproduced from literature.18) 
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Figure 12. The SEM images of pore wall for nanocomposite PAMPS/PAAm/MWCNTs 

double network hydrogels (a) CNTs-0; (b) CNTs-0.5; (c) CNTs-1; and (d) CNTs-4. 

(Reproduced from literature.18) 

 

Figure 13. Fragments of SWCNTs/PAAm hybrid gels after compression tests. 
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Figure 14. Fragments of neat PAAm gels after compression tests. 

Two exceptionally reinforced samples 

We noticed that two specimens of SWCNTs/PAAm nanocomposite hydrogels 

demonstrated more pronounced enhancement of fracture stress or fracture strain. Due to 

their unusual performance, their experimental results were excluded from the valid data. 

However, the fact that their performance was observed in the experiment made them 

deserve our attention. For example, one specimen of CNT0.125 gels did not break until 

the compressive stress reached as high as 1 MPa, which was more than twice of what 

achieved by CNT0.5 gels. It also demonstrated an extraordinary toughness that was three 

times higher than that of neat PAAm gels. Its fracture strain and compressive modulus 

also reached a relatively high value of 0.84 and 38.7 kPa respectively. Another specimen 
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of CNT0.5 gels with the compressive modulus of 16.8 kPa withstood an outstanding 

compressive strain as high as 0.98 when the compressive stress was 450 kPa (Figure 15). 

The mechanical properties of these two specimens and neat PAAm hydrogels are listed in 

Table 3. 

 

Figure 15. The stress-strain curves of neat PAAm gels, a sample of CNT0.125 with 

maximum fracture stress, and a sample of CNT0.5 with maximum fracture strain 

Table 3. The mechanical properties of neat PAAm hydrogels, a sample of 𝐂𝐍𝐓𝟎.𝟏𝟐𝟓 

with maximum fracture stress, and a sample of 𝐂𝐍𝐓𝟎.𝟓 with maximum fracture strain 

Hydrogels 
Compressive 

modulus (kPa) 

Fracture stress 

(kPa) 
Fracture strain 

Toughness 

(𝐾𝐽/𝑚3) 

𝐶𝑁𝑇0 13.2 ± 2.1 249.1 ± 15.8 0.81 ± 0.05 36.6 ± 3.4 

CNT0.125 (𝑚𝑎𝑥 𝜎𝑐) 38.8 997.2 0.84 113.9 

𝐶𝑁𝑇0.5 (𝑚𝑎𝑥 𝜀) 16.8 453.6 0.98 58.6 
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The exceptional mechanical properties possessed by these specimens indicate 

the promisingly potential on reinforcing the mechanical strength of SWCNTs/PAAm 

nanocomposite hydrogels. We hypothesize that the reasons for the performance of the 

two specimens are as follows.  

1. The SWCNTs are more homogeneously distributed in these two specimens, leading 

to more effective energy dissipation and less stress concentration.  

2. The SWCNTs in these two specimens have better alignment in specific directions 

that may be especially beneficial in the compression tests. 

3. Although the group of hydrogels with the same concentration of SWCNTs was 

prepared with the same batch of the aqueous dispersion of SWCNTs, the degree of 

de-agglomeration of SWCNTs in the dispersion has not been examined by 

specialized instruments other than DCDT. That being said, there may be more 

individual SWCNTs in these specimens than others, leading to a more extensive 

contacting surface area for the interaction between SWCNTs and PAAm matrix. 
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Phenomena Observed in the Experiment 

The surface patterns of neat PAAm gels  

When preparing the neat PAAm gels, it was found that some stable and 

systematically arranged patterns sometimes appeared on the top surface of the cylindrical 

samples of PAAm gels after they were taken out of the vacuum box. These patterns are 

grooves on the surface and showed a good recoverability after deformation (Figure 16). 

Gel samples with same and different sizes were made and showed similar pattern units 

such as T-shaped and Y-shaped unit. However, no sample showed the same surface 

pattern as other samples (Figure 17, Figure 18). Tanaka first reported these patterns on 

the hydrogels in 1987 that were then further investigated by a few types of research.40 For 

example, Guvendiren et al. reported similar surface patterns on PHEMA films confined 

on a flat substrate.41 By controlling the modulus gradient or osmotic pressure with depth, 

four typical surface patterns were captured. The surface patterns were considered to be 

generated by a buckling effect due to a mismatch between moduli in a bilayer film. 

However, the method we used to form the surface patterns was distinct from others. For 

example, the bilayer film is not required in our method, and the surface of the PAAm gels 

does not need to be immersed in water to start the formation of the patterns. Accordingly, 

the method we used may serve as an alternative way to create surface patterns in the 

future. 
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Figure 16. The patterns showed good recoverability after deformation. 
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Figure 17. The surface patterns of the PAAm gel samples with the same dimension. 

 

Figure 18. The surface patterns of PAAm gel samples with different dimensions. 
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The wave-like edges of SWCNTs/PAAm hybrid gels 

When fabricating the SWCNTs/PAAm hybrid gels, the edge of the hybrid gels 

presented wave-like curves that had never been observed on neat PAAm gels when they 

were taken out of the vials (Figure 19). The phenomenon only occurred when the 

SWCNTs were well-dispersed. It is inferred that this phenomenon is related to the 

homogeneity of the aqueous dispersion of SWCNTs and resulted from the incorporation 

of SWCNTs and the addition of NaDDBS because they are the only two variables in the 

experiment. There are no researchers that have ever reported such a phenomenon. The 

mechanism for the formation of the wave-like edge is to be further investigated. 

 

Figure 19. The wave-like edges on the top surface of hybrid gel samples were formed 

after gelation. 

The adhesiveness of hydrogel fragments 

Adhesive hydrogels have excellent potential for manufacturing organic and 

dermatological patches, underwater adhesion and so on.42–44 When we picked up a piece 

of fractured samples of SWCNTs/PAAm hybrid gels or neat PAAm gels with tweezers, it 

was noticed that the piece of fractured gels tightly stuck to the tip (Figure 20). The bond 
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between the tweezers and the gels was so intense that only violent shake or vibration 

could separate them. It is interesting that the smooth surfaces of fractured gels are not 

adhesive at all. The tweezers can only stick to some parts of the ridges of the pieces. 

Figure 20 shows that a thin film existed between the tweezers and fractured pieces of 

gels, which withstood hundred or thousand times of its weight. The reasons for the 

adhesiveness only existing on the ridges of fractured hydrogels are unclear and call for 

more studies. 

 

Figure 20. A piece of PAAm hydrogel fragment stuck to tweezers by adhesion. 
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Conclusions and Future Works 

The dispersion of SWCNTs with favorable homogeneity had been successfully 

prepared. The aqueous dispersion of SWCNTs at a concentration of 0.5 mg/ml remained 

stable and homogeneous after two months. The SWCNTs/PAAm hybrid gels had 

subsequently been fabricated via free radical polymerization. The compression tests 

demonstrated the fusion of PAAm and SWCNTs substantially enhanced the compressive 

modulus, fracture stress, toughness. The fracture stress and compressive modulus of 

SWCNTs/PAAm hybrid gels with 0.5 mg/ml SWCNTs increased by 60% and 300% 

respectively compared with neat PAAm gels. Two specimens of hybrid gels were 

captured with exceptional fracture stress as high as 1 MPa and fracture strain at 0.98 

respectively. The more thoroughly fractured hybrid gels and SEM images of increased 

micro-networks in the pore structure of the hybrid gels can be used to account for the 

toughening mechanism. Some phenomena observed in the experiment such as surface 

patterns, wave-like edges, strong adhesiveness were also discussed.  

Although the SWCNTs/PAAm hybrid gels display a significant leap in 

mechanical strength, it is still not comparable with real soft tissues. Their inherently 

notch-sensitive quality also hasn’t been widely improved. To further enhance the 

mechanical strength of hydrogels, we will prepare SWCNTs/PAAm hybrid gels with a 

higher concentration of SWCNTs. Different nano-fibers such as boron nitride nanotubes 

will also be used to fabricate other nanocomposite hydrogels in the expectation of finding 

out the finest reinforcing nano-materials for hydrogels. We will also look into the 
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phenomena observed in the experiment and understand the mechanism behind them. 
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